Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.767
Filtrar
1.
J Mech Behav Biomed Mater ; 154: 106498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581962

RESUMO

Chitosan (CS) and phloroglucinol (PhG), two extracts abundantly found in marine life, were investigated for their ability to biomodify demineralized dentin by enhancing collagen crosslinks and improving dentin extracellular matrix (ECM) mechanical and biochemical stability. Dentin obtained from non-carious extracted human molars were demineralized with phosphoric acid. Baseline Fourier-transform infrared (FTIR) spectra, apparent flexural elastic modulus (AE) and dry mass (DM) of each specimen were independently acquired. Specimens were randomly incubated for 5 min into either ultrapure water (no-treatment), 1% glutaraldehyde (GA), 1% CS or 1% PhG. Water and GA were used, respectively, as a negative and positive control for collagen crosslinks. Specimens' post-treatment FTIR spectra, AE, and DM were obtained and compared with correspondent baseline measurements. Additionally, the host-derived proteolytic activity of dentin ECM was assessed using hydroxyproline assay (HYP) and spectrofluorometric analysis of a fluorescent-quenched substrate specific for matrix metalloproteinases (MMPs). Finally, the bond strength of an etch-and-rinse adhesive was evaluated after application of marine compounds as non-rinsing dentin primers. Dentin specimens FTIR spectral profile changed remarkably, and their AE increased significantly after treatment with marine compounds. DM variation, HYP assay and fluorogenic substrate analysis concurrently indicated the biodegradation of CS- and PhG-treated specimens was significantly lesser in comparison with untreated specimens. CS and PhG treatments enhanced biomechanical/biochemical stability of demineralized dentin. These novel results show that PhG is a primer with the capacity to biomodify demineralized dentin, hence rendering it less susceptible to biodegradation by host-proteases.


Assuntos
Quitosana , Colagem Dentária , Humanos , Dentina/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Hidroxiprolina , Adesivos Dentinários/química , Água/metabolismo , Resistência à Tração
2.
Adv Exp Med Biol ; 1446: 135-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625527

RESUMO

The hair and skin of domestic cats or dogs account for 2% and 12-24% of their body weight, respectively, depending on breed and age. These connective tissues contain protein as the major constituent and provide the first line of defense against external pathogens and toxins. Maintenance of the skin and hair in smooth and elastic states requires special nutritional support, particularly an adequate provision of amino acids (AAs). Keratin (rich in cysteine, serine and glycine) is the major protein both in the epidermis of the skin and in the hair. Filaggrin [rich in some AAs (e.g., serine, glutamate, glutamine, glycine, arginine, and histidine)] is another physiologically important protein in the epidermis of the skin. Collagen and elastin (rich in glycine and proline plus 4-hydroxyproline) are the predominant proteins in the dermis and hypodermis of the skin. Taurine and 4-hydroxyproline are abundant free AAs in the skin of dogs and cats, and 4-hydroxyproline is also an abundant free AA in their hair. The epidermis of the skin synthesizes melanin (the pigment in the skin and hair) from tyrosine and produces trans-urocanate from histidine. Qualitative requirements for proteinogenic AAs are similar between cats and dogs but not identical. Both animal species require the same AAs to nourish the hair and skin but the amounts differ. Other factors (e.g., breeds, coat color, and age) may affect the requirements of cats or dogs for nutrients. The development of a healthy coat, especially a black coat, as well as healthy skin critically depends on AAs [particularly arginine, glycine, histidine, proline, 4-hydroxyproline, and serine, sulfur AAs (methionine, cysteine, and taurine), phenylalanine, and tyrosine] and creatine. Although there are a myriad of studies on AA nutrition in cats and dogs, there is still much to learn about how each AA affects the growth, development and maintenance of the hair and skin. Animal-sourced foodstuffs (e.g., feather meal and poultry by-product meal) are excellent sources of the AAs that are crucial to maintain the normal structure and health of the skin and hair in dogs and cats.


Assuntos
Doenças do Gato , Doenças do Cão , Gatos , Cães , Animais , Aminoácidos , Histidina , Cisteína , Hidroxiprolina , Cabelo , Glicina , Tirosina , Taurina , Serina , Prolina , Arginina
3.
Anal Biochem ; 689: 115506, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460899

RESUMO

Prolidase (EC.3.4.13.9) is a dipeptidase known nowadays to play a pivotal role in several physiological and pathological processes. More in particular, this enzyme is involved in the cleavage of proline- and hydroxyproline-containing dipeptides (imidodipeptides), thus finely regulating the homeostasis of free proline and hydroxyproline. Abnormally high or low levels of prolidase have been found in numerous acute and chronic syndromes affecting humans (chronic liver fibrosis, viral and acute hepatitis, cancer, neurological disorders, inflammation, skin diseases, intellectual disability, respiratory infection, and others) for which the content of proline is well recognized as a clinical marker. As a consequence, the accurate analytical determination of prolidase activity is of greatly significant importance in clinical diagnosis and therapy. Apart from the Chinard's assay, some other more sensitive and well validated methodologies have been published. These include colorimetric and spectrophotometric determinations of free proline produced by enzymatic reactions, capillary electrophoresis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, electrochemoluminescence, thin layer chromatography, and HPLC. The aim of this comprehensive review is to make a detailed survey of the in so far reported analytical techniques, highlighting their general features, as well as their advantages and possible drawbacks, providing in the meantime suggestions to stimulate further research in this intriguing field.


Assuntos
Dipeptidases , Ensaios Enzimáticos , Humanos , Colorimetria , Dipeptidases/análise , Dipeptidases/química , Fibrose , Hidroxiprolina , Prolina/análise , Ensaios Enzimáticos/métodos
4.
J Chromatogr A ; 1720: 464771, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447433

RESUMO

During collagen biosynthesis, proline is post-translationally converted to hydroxyproline by specific enzymes. This amino acid, unique to collagen, plays a crucial role in stabilizing the collagen triple helix structure and could serve as an important biomarker for collagen content and quality analysis. Hydroxyproline has four isomers, depending on whether proline is hydroxylated at position 4 or 3 and on whether the cis- or trans- conformation is formed. Moreover, as extensive hydrolysis of collagen is required for its amino acid analysis, epimerization may also occur, although to a lesser extent, giving a total of eight possible isomers. The aim of the present study was to develop a reversed-phase high-performance liquid chromatography-UV-mass spectrometry (RPLC-UV-MS) method for the separation and quantification of all eight hydroxyproline isomers. After the chiral derivatization of the hydroxyproline isomers with Nα-(2,4-dinitro-5-fluorophenyl)-L-valinamide (L-FDVA), to enable their UV detection, the derivatized diastereoisomers were separated by testing different C18 column technologies and morphologies and optimizing operative conditions such as the mobile phase composition (solvent, additives), elution mode, flow rate and temperature. Baseline resolution of all eight isomers was achieved on a HALO® ES-C18 reversed-phase column (150×1.5 mm, 2.7 µm, 160 Å) using isocratic elution and MS-compatible mobile phase. The optimized method was validated for the quantification of hydroxyproline isomers and then applied to different collagen hydrolysates to gain insight and a deeper understanding of hydroxyproline abundances in different species (human, chicken) and sources (native, recombinant).


Assuntos
Colágeno , Prolina , Humanos , Hidroxiprolina/análise , Cromatografia Líquida de Alta Pressão/métodos , Colágeno/análise , Colágeno/química , Indicadores e Reagentes
5.
Cell ; 187(8): 1907-1921.e16, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38552624

RESUMO

Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices. Within the helices, O-linked glycosylation of the hydroxyproline residues and O-galactosylation of interspersed serine residues create a carbohydrate casing. Analysis of the associated glycans reveals how the pattern of hydroxyproline repetition determines the type and extent of glycosylation. MST3 possesses a PKD2-like transmembrane domain that forms a heteromeric polycystin-like cation channel with PKD2 and SIP, explaining how mastigonemes are tethered to ciliary membranes.


Assuntos
Chlamydomonas reinhardtii , Cílios , Glicoproteínas , Cílios/química , Glicoproteínas/química , Glicosilação , Hidroxiprolina/química , Plantas/metabolismo , Chlamydomonas reinhardtii/química
6.
J Ethnopharmacol ; 327: 118055, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484951

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trachyspermum roxburghianum (DC.) H. Wolff, commonly known as 'Ajamoda,' is a neglected Indian spice highly used in Ayurveda and folklore remedies as an antimicrobial for chronic wounds and discharges, along with many other disease conditions. AIM OF THE STUDY: The objective of the study was to explore chemical composition and to investigate the antioxidant, antimicrobial, analgesic, and wound healing activities of T. roxburghianum fruit essential oil from India. MATERIALS AND METHODS: The phytochemical characterization of the oil was determined through standard qualitative procedures and the gas chromatography-mass spectrometry (GC-MS) technique. The in vitro antioxidant aptitude was assessed by scavenging DPPH and ABTS radicals. The antimicrobial potential of the oil was investigated using the disc diffusion method, followed by the determination of minimum inhibitory concentration against Gram-positive and Gram-negative bacterial and fungal strains. The analgesic potential was evaluated using thermal and chemically induced pain models in Swiss albino mice. Wound healing was assessed in vivo, including determining wound contraction rates, histopathology, and hydroxyproline estimation, using the excision wound model in Swiss albino mice. RESULTS: GC-MS analysis identified 55 compounds with major terpenoids, including thymol (13.8%), limonene (11.5%), and others. Substantial radical-scavenging activity was exhibited by T. roxburghianum fruit essential oil (TREO) (IC50 94.41 ± 2.00 µg/mL in DPPH assay and 91.28 ± 1.94 µg/mL in ABTS assay). Microorganisms were inhibited with low MIC (2 µL/mL for the inhibition of Staphylococcus aureus and Bacillus subtilis; 4 µL/mL against Salmonella typhi and 16 µL/mL against Candida albicans). In the cytotoxicity study, no cytotoxicity was observed on the Monkey Normal Kidney Cell line (Vero). Significant antinociceptive effects were observed (25.47 ± 1.10 % of inhibition at 100 mg/kg and 44.31 ± 1.69 % at 200 mg/kg). A remarkable rate of wound closure and epithelization, along with a marked increase in hydroxyproline content, were observed for the oil during wound healing in mice. CONCLUSIONS: The results suggested that oil could be utilized as a potential source of wound healing therapeutics.


Assuntos
Anti-Infecciosos , Benzotiazóis , Óleos Voláteis , Ácidos Sulfônicos , Camundongos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Hidroxiprolina , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/química , Cicatrização , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Testes de Sensibilidade Microbiana
7.
Amino Acids ; 56(1): 21, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461423

RESUMO

Metformin (N,N-dimethylbiguanide), an inhibitor of gluconeogenesis and insulin sensitizer, is widely used for the treatment of type 2 diabetes. In some patients with renal insufficiency, metformin can accumulate and cause lactic acidosis, known as metformin-associated lactic acidosis (MALA, defined as lactate ≥ 5 mM, pH < 7.35, and metformin concentration > 38.7 µM). Here, we report on the post-translational modification (PTM) of proline (Pro) to 4-hydroxyproline (OH-Pro) in metformin-associated lactic acidosis and in metformin-treated patients with Becker muscular dystrophy (BMD). Pro and OH-Pro were measured simultaneously by gas chromatography-mass spectrometry before, during, and after renal replacement therapy in a patient admitted to the intensive care unit (ICU) because of MALA. At admission to the ICU, plasma metformin concentration was 175 µM, with a corresponding lactate concentration of 20 mM and a blood pH of 7.1. Throughout ICU admission, the Pro concentration was lower compared to healthy controls. Renal excretion of OH-Pro was initially high and decreased over time. Moreover, during the first 12 h of ICU admission, OH-Pro seems to be renally secreted while thereafter, it was reabsorbed. Our results suggest that MALA is associated with hyper-hydroxyprolinuria due to elevated PTM of Pro to OH-Pro by prolyl-hydroxylase and/or inhibition of OH-Pro metabolism in the kidneys. In BMD patients, metformin, at the therapeutic dose of 3 × 500 mg per day for 6 weeks, increased the urinary excretion of OH-Pro suggesting elevation of Pro hydroxylation to OH-Pro. Our study suggests that metformin induces specifically the expression/activity of prolyl-hydroxylase in metformin intoxication and BMD.


Assuntos
Acidose Láctica , Diabetes Mellitus Tipo 2 , Metformina , Distrofia Muscular de Duchenne , Humanos , Metformina/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Acidose Láctica/induzido quimicamente , Acidose Láctica/terapia , Hidroxiprolina , Cromatografia Gasosa-Espectrometria de Massas , Prolina , Hidroxilação , Distrofia Muscular de Duchenne/tratamento farmacológico , Ácido Láctico , Oxigenases de Função Mista/uso terapêutico , Hipoglicemiantes/efeitos adversos
8.
ACS Chem Biol ; 19(2): 536-550, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38324914

RESUMO

Native chemical ligation (NCL) at proline has been limited by cost and synthetic access. In addition, prior examples of NCL using mercaptoproline have exhibited stalling of the reaction after thioester exchange, due to inefficient S → N acyl transfer. Herein, we develop methods, using inexpensive Boc-4R-hydroxyproline, for the solid-phase synthesis of peptides containing N-terminal 4R-mercaptoproline and 4R-selenoproline. The synthesis proceeds via proline editing on the N-terminus of fully synthesized peptides on the solid phase, converting an N-terminal Boc-4R-hydroxyproline to the 4S-bromoproline, followed by an SN2 reaction with potassium thioacetate or selenobenzoic acid. After cleavage from the resin and deprotection, peptides with functionalized N-terminal proline amino acids were obtained. NCL reactions with mercaptoproline proceeded slowly under standard NCL conditions, with the S-acyl transthioesterification intermediate observed as a major species. Computational investigations indicated that the bicyclic intermediates and transition states for S → N acyl transfer are sufficiently low in energy (10-15 kcal mol-1 above starting material) that ring strain cannot explain the slow S → N acyl transfer. Instead, the bicyclic zwitterionic tetrahedral intermediate has a low barrier for reversion to the S-acyl intermediate, causing reversion to the thioester (reverse reaction) to occur preferentially over elimination to generate the amide (forward reaction). We hypothesized that a buffer capable of general acid and/or general base catalysis could promote S → N acyl transfer and thus achieve greater efficiency in proline NCL. In the presence of 2 M imidazole at pH 6.8, NCL with mercaptoproline proceeded efficiently to generate the peptide with a native amide bond. NCL with selenoproline also proceeded efficiently to generate the desired products when a thiophenol thioester was employed as a ligation partner. After desulfurization or deselenization, the products obtained were identical to those synthesized directly, confirming that the solid-phase proline editing reactions proceeded stereospecifically and without epimerization.


Assuntos
Peptídeos , Prolina , Hidroxiprolina , Peptídeos/química , Amidas , Compostos de Enxofre
9.
Immun Inflamm Dis ; 12(2): e1175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38415919

RESUMO

BACKGROUND: Radiation-induced lung injury (RILI) is a common consequence of thoracic radiation therapy that lacks effective preventative and treatment strategies. Dihydroartemisinin (DHA), a derivative of artemisinin, affects oxidative stress, immunomodulation, and inflammation. It is uncertain whether DHA reduces RILI. In this work, we investigated the specific mechanisms of action of DHA in RILI. METHODS: Twenty-four C57BL/6J mice were randomly divided into four groups of six mice each: Control group, irradiation (IR) group, IR + DHA group, and IR + DHA + Brusatol group. The IR group received no interventions along with radiation treatment. Mice were killed 30 days after the irradiation. Morphologic and pathologic changes in lung tissue were observed with hematoxylin and eosin staining. Detection of hydroxyproline levels for assessing the extent of pulmonary fibrosis. Tumor necrosis factor α (TNF-α), transforming growth factor-ß (TGF-ß), glutathione peroxidase (GPX4), Nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) expression in lung tissues were detected. In addition, mitochondrial ultrastructural changes in lung tissues were also observed, and the glutathione (GSH) content in lung tissues was assessed. RESULTS: DHA attenuated radiation-induced pathological lung injury and hydroxyproline levels. Additionally, it decreased TNF-α and TGF-ß after irradiation. DHA may additionally stimulate the Nrf2/HO-1 pathway. DHA upregulated GPX4 and GSH levels and inhibited cellular ferroptosis. Brusatol reversed the inhibitory effect of DHA on ferroptosis and its protective effect on RILI. CONCLUSION: DHA modulated the Nrf2/HO-1 pathway to prevent cellular ferroptosis, which reduced RILI. Therefore, DHA could be a potential drug for the treatment of RILI.


Assuntos
Artemisininas , Ferroptose , Lesão Pulmonar , Quassinas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Fator 2 Relacionado a NF-E2 , Heme Oxigenase-1 , Hidroxiprolina , Fator de Necrose Tumoral alfa , Pulmão , Fator de Crescimento Transformador beta
10.
J Agric Food Chem ; 72(7): 3622-3632, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38347764

RESUMO

The stimulation of host iron absorption is a promising antianemia strategy adjunctive/alternative to iron intervention. Here, gum arabic (GA) containing 3.14 ± 0.56% hydroxyproline-rich protein with repetitive X-(Pro/Hyp)n motifs was found to increase iron reduction, uptake, and transport to upregulate duodenal cytochrome b (Dcytb), divalent metal transporter 1 (DMT1), ferroportin, and hephaestin to inhibit hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) and to stabilize HIF2α in polarized Caco-2 cell monolayers in a dose-dependent manner, and this was dependent on its protein fraction, rather than the polysaccharide fraction. Three abundant GA-derived hydroxyproline-containing dipeptides of Hyp-Hyp, Pro-Hyp, and Ser-Hyp were detected by liquid chromatography-mass spectrometry in the lysates of polarized Caco-2 cell monolayers at the maximum levels of  0.167 ± 0.021, 0.134 ± 0.017, and 0.089 ± 0.015 µg/mg of protein, respectively, and showed desirable docking affinity energy values of -7.53, - 7.91, and -7.39 kcal/mol, respectively, against human PHD3. GA-derived peptides also acutely increased duodenal HIF2α stability and Dcytb, DMT1, ferroportin, and hephaestin transcription in rats (P < 0.05). Overall, GA-derived hydroxyproline-rich peptides stimulated intestinal iron absorption via PHD inhibition, HIF2α stabilization, and subsequent upregulation of iron transport proteins.


Assuntos
Proteínas de Transporte , Ferro , Ratos , Humanos , Animais , Ferro/metabolismo , Proteínas de Transporte/metabolismo , Regulação para Cima , Goma Arábica , Hidroxiprolina , Células CACO-2 , Absorção Intestinal , Peptídeos/metabolismo
11.
J Ethnopharmacol ; 325: 117842, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38310987

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acacia nilotica (L.) Wild. Ex Delilie is a shrub with significant ethnomedicinal stature. Therefore, in the undertaken study, its wound healing attributes are determined. AIM OF THE STUDY: The current study provided evidence of the traditional use of A. nilotica species and conferred A. nilotica bark extract as a potent candidate for wound healing agents. MATERIALS & METHODS: A. nilotica leaves extract (ANL-E); A. nilotica bark extract (ANB-E), and A. nilotica stem extract (ANS-E) were prepared using methanol-chloroform (1:1). Phytochemical analysis was performed using gallic acid equivalent (GAE) total phenolic content (TPC), quercetin equivalent (QE) total flavonoid content (TFC) assays and High-performance liquid chromatography (HPLC). In vitro antioxidant potential (free radical scavenging activity (FRSA), total antioxidant capacity (TAC), and ferric reducing antioxidant power (FRAP) assay), antibacterial activity (broth microdilution method) and hemolytic analysis was carried out. Wound healing proficiency of ANB-E was determined by wound excision model followed by estimating hydroxyproline content and endogenous antioxidant markers. RESULTS: Maximum phenolic and flavonoid content were depicted by ANB-E i.e., 50.9 ± 0.34 µg gallic acid equivalent/mg extract and 28.7 ± 0.13 µg quercetin equivalent/mg extract, respectively. HPLC analysis unraveled the presence of a significant amount of catechin in ANL-E, ANB-E and ANS-E (54.66 ± 0.02, 44.9 ± 0.004 and 31.36 ± 0.02 µg/mg extract) respectively. Highest percent free radical scavenging activity, total antioxidant capacity, and ferric reducing action power (i.e., 93.3 ± 0.42 %, 222.10 ± 0.76, and 222.86 ± 0.54 µg ascorbic acid equivalent/mg extract) were exhibited by ANB-E. Maximum antibacterial potential against Staphylococcus aureus was exhibited by ANB-E (MIC 12.5 µg/ml). Two of the extracts i.e., ANL-E and ANB-E were found biocompatible with less than 5 % hemolytic potential. Based upon findings of in vitro analysis, ANB-E (10, 5, and 2.5 % w/w, C1, C2, and C3, respectively) was selected for evaluating its in vivo wound healing potential. Maximum contraction of wound area and fastest epithelization i.e., 98 ± 0.05 % and 11.2 ± 1.00 (day) was exhibited by C1. Maximum hydroxyproline content, glutathione, catalase, and peroxidase were demonstrated by C1 i.e., 15.9 ± 0.52 µg/mg, 9.3 ± 0.17 mmol/mg, 7.2 ± 0.17 and 6.2 ± 0.14 U/mg, respectively. Maximal curbed lipid peroxidation i.e., 0.7 ± 0.15 mmol/mg was also depicted by C1. CONCLUSIONS: In a nutshell, the current investigation endorsed the wound healing potential of ANB-E suggesting it to be an excellent candidate for future studies.


Assuntos
Acacia , Antioxidantes , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Acacia/química , Quercetina , Hidroxiprolina , Ácido Gálico , Antibacterianos/farmacologia , Flavonoides/farmacologia , Flavonoides/análise , Radicais Livres
12.
Ann Otol Rhinol Laryngol ; 133(1): 50-57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37394747

RESUMO

OBJECTIVES: The present study was performed to determine whether the inhalation of carboxymethyl (CM)-chitosan can alleviate tracheal fibrosis in a rabbit model. METHODS: We designed a rabbit model of tracheal stenosis involving electrocoagulation with a spherical electrode. Twenty New Zealand white rabbits were randomly divided into experimental and control groups (10 animals each). Tracheal damage was successfully established by electrocoagulation in all animals. The experimental group was given CM-chitosan (inhalation for 28 days), while the control group inhaled saline. The effects of CM-chitosan inhalation on tracheal fibrosis were analyzed. Laryngoscopy was performed to evaluate and grade tracheal granulation, while tracheal fibrosis was evaluated by histological examination. The effects of CM-chitosan inhalation on the tracheal mucosa were examined by scanning electron microscopy (SEM), and hydroxyproline content in tracheal scar tissue was determined by enzyme-linked immunosorbent assay (ELISA). RESULTS: Laryngoscopy showed that the tracheal cross-sectional area was smaller in the experimental than control group. The amounts of loose connective tissue and damaged cartilage, as well as the severity of collagen and fibrosis, decreased following inhalation of CM-chitosan. According to the ELISA, the experimental group had low levels of hydroxyproline in the tracheal scar tissue. CONCLUSION: The findings presented here showed that inhalation of CM-chitosan mitigated posttraumatic tracheal fibrosis in a rabbit model, thus suggesting a potential new treatment for tracheal stenosis.


Assuntos
Quitosana , Estenose Traqueal , Animais , Coelhos , Estenose Traqueal/tratamento farmacológico , Estenose Traqueal/etiologia , Cicatriz/etiologia , Hidroxiprolina , Fibrose
13.
Food Funct ; 15(1): 284-294, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38083874

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease that leads to dyspnea and progressive loss of lung function. This study aimed to investigate the protective effect of betanin (BET), the major pigment in red beetroot, on pulmonary fibrosis induced by bleomycin (BLM) in rats and to assess the underlying mechanisms. In this view, total and differential cell counts and LDH activity in bronchoalveolar lavage fluid were estimated. Furthermore, MDA and GSH contents in the lungs were colorimetrically measured, while hydroxyproline, NLRP3, ASC, caspase-1, TGF-ß1, and vimentin levels in lung tissue were evaluated using the ELISA technique. Moreover, IL-1ß, E-cadherin, and α-SMA expressions were analyzed by immunostaining of lung specimens. BET treatment protects against pulmonary fibrosis as indicated by the reduction in total and differential cell counts, LDH activity, hydroxyproline, NLRP3, ASC, caspase-1, IL-1ß, and TGF-ß1 levels. MDA content was also decreased following BET administration, while GSH content was elevated. Additionally, BET suppressed the EMT process as evidenced by an increase in E-cadherin expression besides the reduction in vimentin and α-SMA expressions. To conclude, these results revealed the protective effect of BET against pulmonary fibrosis that might be attributed to the attenuation of the NLRP3/IL-1ß/TGF-ß1 signaling pathway and EMT process.


Assuntos
Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/genética , Vimentina/metabolismo , Bleomicina/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Betacianinas/farmacologia , Hidroxiprolina/efeitos adversos , Hidroxiprolina/metabolismo , Pulmão , Caderinas/metabolismo , Caspases/metabolismo , Transição Epitelial-Mesenquimal
14.
Food Funct ; 15(1): 401-410, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099483

RESUMO

Fish collagen, derived from sustainable sources, offers a valuable substrate for generating peptides with diverse biofunctionalities. In this study, alkaline, papain, and ginger protease were used to enzymatically hydrolyze fish skin collagen. The peptide molecular weight distribution and sequence were measured using HPLC and ICP-MS-MS, with papain/alkaline protease (AP) and papain/alkaline/ginger protease (APG) hydrolyzed samples compared. As the results showed, the incorporation of ginger protease was useful for increasing the degree of hydrolysis, with the content of <400 Da peptides increasing from 49.82% to 58.56%. The identified peptide sequence in the APG sample had more proline at the C-terminal. The peptides were separated into two components (different in molecular weight) using gel column chromatography. The molecular weight distribution, amino acid composition, ACE inhibitory activity, and fibroblast proliferation activity of the collected components were measured. In comparison, the contents of proline and hydroxyproline in the larger peptides decreased obviously after combined hydrolysis by ginger protease, reflecting the formation of a peptide sequence of smaller molecular weight containing glycine and hydroxyproline. The combined hydrolysis of ginger protease was beneficial for the improvement of the ACE inhibitory activity of the sample. However, the fibroblast proliferation activity of AP was higher than that of APG, indicating that further hydrolysis by ginger protease may destroy the hydroxyproline at the end of the peptide sequence. This study proposed a creative directional hydrolysis method and provided practical guidance for the production of collagen peptides with enhanced functional activity.


Assuntos
Papaína , Peptídeos , Animais , Hidrólise , Hidroxiprolina , Papaína/metabolismo , Peptídeos/química , Colágeno/metabolismo , Prolina , Relação Estrutura-Atividade
15.
Eur J Med Chem ; 264: 116033, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096651

RESUMO

Arginase is a multifaced enzyme that plays an important role in health and disease being regarded as a therapeutic target for the treatment of various pathological states such as malignancies, asthma, and cardiovascular disease. The discovery of boronic acid-based arginase inhibitors in 1997 revolutionized attempts of medicinal chemistry focused on development of drugs targeting arginase. Unfortunately, these very polar compounds had limitations such as analysis and purification without chromophores, synthetically challenging space, and poor oral bioavailability. Herein, we present a novel class of boronic acid-based arginase inhibitors which are piperidine derivatives exhibiting a different pharmacological profile compared to our drug candidate in cancer immunotherapy -OATD-02 - dual ARG1/2 inhibitor with high intracellular activity. Compounds from this new series show low intracellular activity, hence they can inhibit mainly extracellular arginase, providing different therapeutic space compared to a dual intracellular ARG1/2 inhibitor. The disclosed series showed good inhibitory potential towards arginase enzyme in vitro (IC50 up to 160 nM), favorable pharmacokinetics in animal models, and encouraging preliminary in vitro and in vivo tolerability. Compounds from the new series have moderate-to-high oral bioavailability (up to 66 %) and moderate clearance in vivo. Herein we describe the development and optimization of the synthesis of the new class of boronic acid-based arginase inhibitors via a ring expansion approach starting from the inexpensive chirality source (d-hydroxyproline). This upgraded methodology facilitated a gram-scale delivery of the final compound and eliminated the need for costly and time-consuming chiral resolution.


Assuntos
Arginase , Inibidores Enzimáticos , Animais , Arginase/química , Inibidores Enzimáticos/química , Ácidos Borônicos/farmacologia , Hidroxiprolina , Química Farmacêutica
16.
Mar Drugs ; 21(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38132929

RESUMO

The objective of this study was to investigate the effect of low-molecular-weight fish collagen (valine-glycine-proline-hydroxyproline-glycine-proline-alanine-glycine; LMWCP) on H2O2- or LPS-treated primary chondrocytes and monoiodoacetate (MIA)-induced osteoarthritis rat models. Our findings indicated that LMWCP treatment exhibited protective effects by preventing chondrocyte death and reducing matrix degradation in both H2O2-treated primary chondrocytes and cartilage tissue from MIA-induced osteoarthritis rats. This was achieved by increasing the levels of aggrecan, collagen type I, collagen type II, TIMP-1, and TIMP-3, while simultaneously decreasing catabolic factors such as phosphorylation of Smad, MMP-3, and MMP-13. Additionally, LMWCP treatment effectively suppressed the activation of inflammation and apoptosis pathways in both LPS-treated primary chondrocytes and cartilage tissue from MIA-induced osteoarthritis rats. These results suggest that LMWCP supplementation ameliorates the progression of osteoarthritis through its direct impact on inflammation and apoptosis in chondrocytes.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Condrócitos , Hidroxiprolina/efeitos adversos , Hidroxiprolina/metabolismo , Glicina/farmacologia , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/prevenção & controle , Inflamação/metabolismo , Colágeno Tipo II/farmacologia , Peptídeos/farmacologia , Valina/efeitos adversos , Valina/metabolismo , Células Cultivadas
17.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(12): 1309-1315, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38149395

RESUMO

OBJECTIVE: To observe whether metformin (MET) inhibits transforming growth factor-ß1 (TGF-ß1)/Smad3 signaling pathway by activating adenosine activated protein kinase (AMPK), so as to alleviate the pulmonary fibrosis caused by paraquat (PQ) poisoning in mice. METHODS: Male C57BL/6J mice were randomly divided into the Control group, PQ poisoning model group (PQ group), MET intervention group (PQ+MET group), AMPK agonist group (PQ+AICAR group), and AMPK inhibitor group (PQ+MET+CC group), according to a random number table method. A mouse model of PQ poisoning was established by one-time peritoneal injection of 1 mL PQ solution (20 mg/kg). The Control group was injected with the same volume of normal saline. After 2 hours of modeling, the PQ+MET group was given 2 mL of 200 mg/kg MET solution by gavage, the PQ+AICAR group was given 2 mL of 200 mg/kg AICAR solution by intraperitoneal injection, the PQ+MET+CC group was given 2 mL of 200 mg/kg MET solution by gavage and then 1 mL complex C (CC) solution (20 mg/kg) was intraperitoneally injected, the Control group and PQ group were given 2 mL of normal saline by gavage. The intervention was given once a day for 21 consecutive days. The 21-day survival rate of ten mice in each group was calculated, and the lung tissues of remaining mice were collected at 21 days after modeling. The pathological changes of lung tissues were observed under light microscope after hematoxylin-eosin (HE) staining and Masson staining, and the degree of pulmonary fibrosis was evaluated by Ashcroft score. The content of hydroxyproline in lung tissue and oxidative stress indicators such as malondialdehyde (MDA) and superoxide dismutase (SOD) were detected. The protein expressions of E-cadherin, α-smooth muscle actin (α-SMA), phosphorylated AMPK (p-AMPK), TGF-ß1 and phosphorylated Smad3 (p-Smad3) in lung tissue were detected by Western blotting. RESULTS: Compared with the Control group, the 21 days survival rate was significantly reduced, lung fibrosis and Ashcroft score were significantly increased in PQ group. In addition, the content of hydroxyproline, MDA and the protein expressions of α-SMA, TGF-ß1 and p-Smad3 in lung tissue were significantly increased, while the activity of SOD and the protein expressions of E-cadherin and p-AMPK were significantly decreased in PQ group. Compared with the PQ group, the 21 days survival rates of mice were significantly improved in the PQ+MET group and PQ+AICAR group (70%, 60% vs. 20%, both P < 0.05). The degree of pulmonary fibrosis and the Ashcroft score were significantly reduced (1.50±0.55, 2.00±0.63 vs. 6.67±0.52, both P < 0.05). The content of hydroxyproline and MDA in lung tissue, as well as α-SMA, TGF-ß1 and p-Smad3 protein expressions were significantly reduced [hydroxyproline (mg/L): 2.03±0.11, 3.00±0.85 vs. 4.92±0.65, MDA (kU/g): 2.06±1.48, 2.10±1.80 vs. 4.06±1.33, α-SMA/GAPDH: 0.23±0.06, 0.16±0.06 vs. 1.00±0.09, TGF-ß1/GAPDH: 0.28±0.03, 0.53±0.05 vs. 0.92±0.06 p-Smad3/GAPDH: 0.52±0.04, 0.69±0.06 vs. 1.11±0.10, all P < 0.05], SOD activity and the protein expressions of E-cadherin and p-AMPK were significantly increased [SOD (µmol/g): 39.76±1.35, 33.03±1.28 vs. 20.08±1.79, E-cadherin/GAPDH: 0.91±0.08, 0.72±0.08 vs. 0.26±0.04, p-AMPK/GAPDH: 0.62±0.04, 0.60±0.01 vs. 0.20±0.04, all P < 0.05]. However, these protective effects of MET were inhibited by the addition of AMPK inhibitor CC solution. CONCLUSIONS: MET can effectively alleviate the degree of pulmonary fibrosis in mice poisoned with PQ, and its mechanism may be related to the activation of AMPK and inhibition of TGF-ß1/Smad3 signaling pathway, which can be inhibited by AMPK inhibitor CC.


Assuntos
Metformina , Fibrose Pulmonar , Camundongos , Masculino , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Paraquat , Proteínas Quinases Ativadas por AMP/farmacologia , Metformina/farmacologia , Hidroxiprolina/farmacologia , Solução Salina , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Caderinas , Superóxido Dismutase
18.
J Appl Biomed ; 21(4): 208-217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112460

RESUMO

Although many efforts have been made to improve management strategies and diagnostic methods in the past several decades, the prevention of anastomotic complications, such as anastomotic leaks and strictures, remain a major clinical challenge. Therefore, new molecular pathways need to be identified that regulate anastomotic healing, and to design new treatments for patients after anastomosis to reduce the occurrence of complications. Rabbits were treated with a MST1/2 inhibitor XMU-XP-1, a Chinese medicine formula Shenhuang plaster (SHP) or a control vehicle immediately after surgery. The anastomotic burst pressure, collagen deposition, and hydroxyproline concentration were evaluated at 3 and 7 days after the surgery, and qRT-PCR and western-blot analyses were used to characterize mRNA and protein expression levels. Both XMU-XP-1 and SHP significantly increased anastomotic burst pressure, collagen deposition, and the concentration of hydroxyproline in intestinal anastomotic tissue at postoperative day 7 (POD 7). Importantly, SHP could induce TGF-ß1 expression, which activated its downstream target Smad-2 to activate the TGF-ß1 signaling pathway. Moreover, SHP reduced the phosphorylation level of YAP and increased its active form, and treatment with verteporfin, a YAP-TEAD complex inhibitor, significantly suppressed the effects induced by SHP during anastomotic tissue healing. This study demonstrated that activation of the Hippo-YAP pathway enhances anastomotic healing, and that SHP enhances both the TGF-ß1/Smad and YAP signaling pathways to promote rabbit anastomotic healing after surgery. These results suggest that SHP could be used to treat patients who underwent anastomosis to prevent the occurrence of anastomotic complications.


Assuntos
Lagomorpha , Fator de Crescimento Transformador beta , Animais , Humanos , Coelhos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Hidroxiprolina/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Transdução de Sinais , Lagomorpha/metabolismo , Colágeno/farmacologia , Anastomose Cirúrgica
19.
Chem Biodivers ; 20(12): e202301529, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955210

RESUMO

The study's objective is to clarify the probable mechanisms underlying the wound-healing properties of Helianthemum canum L. (Cistaceae), a traditional anti-inflammatory and wound-healing medicine. LC/MS-MS was used to perform phytochemical analyses on a 70 % methanol extract of the plant's aerial parts. In vivo, linear incision and circular excision models were used to evaluate the wound healing activity. For anti-inflammatory effect, in vivo acetic acid capillary permeability assay and in vitro Interleukin 1, Interleukin 6, and Interferon É£ levels in LPS-induced FR skin fibroblast cell line were also evaluated. The extract significantly improved wound healing in experimental models, with tensile strength values of 27.8 % and a contraction value of 35.09 %. Histopathological examinations, hydroxyproline estimation, hyaluronidase, collagenase, and elastase enzyme inhibitory assays confirmed wound healing potential. Inflammatory cytokines were significantly inhibited in the LPS-induced FR cell line, with the highest effect seen on IL-6 (34.5±2.12 pg/mL). This study offered the first concrete proof that H. canum can be used to treat wounds by suggesting that the myricetin and quinic acid content identified by LCMS-MS analysis may be accountable for the effect of H. canum on wound contraction and hydroxyproline production.


Assuntos
Cistaceae , Extratos Vegetais , Ratos , Animais , Extratos Vegetais/química , Ratos Sprague-Dawley , Hidroxiprolina/metabolismo , Lipopolissacarídeos/farmacologia , Cicatrização , Compostos Fitoquímicos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cistaceae/metabolismo
20.
Microb Cell Fact ; 22(1): 240, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986164

RESUMO

BACKGROUND: trans-4-Hydroxyproline (T-4-HYP) is a promising intermediate in the synthesis of antibiotic drugs. However, its industrial production remains challenging due to the low production efficiency of T-4-HYP. This study focused on designing the key nodes of anabolic pathway to enhance carbon flux and minimize carbon loss, thereby maximizing the production potential of microbial cell factories. RESULTS: First, a basic strain, HYP-1, was developed by releasing feedback inhibitors and expressing heterologous genes for the production of trans-4-hydroxyproline. Subsequently, the biosynthetic pathway was strengthened while branching pathways were disrupted, resulting in increased metabolic flow of α-ketoglutarate in the Tricarboxylic acid cycle. The introduction of the NOG (non-oxidative glycolysis) pathway rearranged the central carbon metabolism, redirecting glucose towards acetyl-CoA. Furthermore, the supply of NADPH was enhanced to improve the acid production capacity of the strain. Finally, the fermentation process of T-4-HYP was optimized using a continuous feeding method. The rate of sugar supplementation controlled the dissolved oxygen concentrations during fermentation, and Fe2+ was continuously fed to supplement the reduced iron for hydroxylation. These modifications ensured an effective supply of proline hydroxylase cofactors (O2 and Fe2+), enabling efficient production of T-4-HYP in the microbial cell factory system. The strain HYP-10 produced 89.4 g/L of T-4-HYP in a 5 L fermenter, with a total yield of 0.34 g/g, the highest values reported by microbial fermentation, the yield increased by 63.1% compared with the highest existing reported yield. CONCLUSION: This study presents a strategy for establishing a microbial cell factory capable of producing T-4-HYP at high levels, making it suitable for large-scale industrial production. Additionally, this study provides valuable insights into regulating synthesis of other compounds with α-ketoglutaric acid as precursor.


Assuntos
Vias Biossintéticas , Escherichia coli , Hidroxiprolina , Escherichia coli/genética , Escherichia coli/metabolismo , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Ciclo do Ácido Cítrico , Engenharia Metabólica/métodos , Carbono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...